

LOCATION & DESIGN DIVISION

CO Location and Design

Jason Williams, P.E.
Assistant State L&D Engineer

Location and Design Division Leadership Team

L&D CONTRACTS UPDATE

Location and Design Contracts Roles and Responsibilities

Emmett Heltzel, P.E.

39055-22954
State Location & Design Engineer
Division Administrator

Richard Worssam, P.E.

Assistant State L&D Engineer
39055-0267
(Program Delivery Support)
NOVA and Culpeper Districts

Emmett Heltzel, P.E.
39055-22954
State Location & Design Engineer
Division Administrator

Reviews and Recommends Project Specifics Scope and Manhours. Task Order to the Contract Manager (NOVA, Culpeper) Reviews
and Recommends
Project Specifics Scope
and Manhours. Task Ord
er to the Contract
Manager (HR and
Lynchburg)

Jason Williams, P.E.
Assistant State L&D Engineer
39055-00626
(Program Delivery Support)
Richmond and Fredericksburg Districts

Reviews
and Recommends
Project Specifics Scope
and Manhours. (Rich,
Fred)
Staff Placement with
PSPO, negotiations,
executing task orders for
SW Design Contracts

Vernon Heishman, P.E.
Assistant State L&D Engineer
39055-04354
(Program Delivery Support)
Salem, Bristol and Staunton Districts

Reviews and Recommends Project Specifics Scope and Manhours. Task Ord er to the Contract Manager (Salem, Bristol, Staunton) VACANT General Admin Manager II 19224-20021 Senior Business Manager

Renewals, Invoicing,
Database
management, Support in
Staff Addition
Megan McDermott leads
invoicing process w/ Chris
Morthland

SW L&D Design Project Specifics and Program Support Services (SS)

Anticipated Advertisements

- Hampton Roads District Engineering Program Support Services, Project Specific, \$56 Mil, Q1-2024
- Program Support Services for I-81 Corridor Improvement Program (Non-Design-Build), PSS, \$18 Mil, Q3-2024
- I-81 Widening MM116 to MM128, Project Specific, Salem, \$10 Mil, Q4-2024
- Possible Anticipated Advertisements
 - SMART24 Route 7 UPC 123833, Project Specific, NOVA, \$3.1 Mil, Date TBD

SW L&D Design Term Contracts Update

2021 SW (Statewide) L&D Design Contracts Recap

- Contracts executed in Aug-Oct of 2021.
- All eight consultants nearing term 3 completion.
- All contracts will utilize full capacity of 3 terms at 4 million/term.
- 372 Assignments
- Nearly 96 million of executed work in 2 years
- THANK YOU consulting industry!

2021 Design Term Contracts Summary

District	# of Tasks	Average Value	Total Value	# of Staff Augmenetation
Bristol	23	\$ 276,054.00	\$ 6,349,000.00	2
Culpeper	26	\$ 382,186.00	\$ 9,936,000.00	3
Fredericksburg	26	\$ 178,615.00	\$ 6,243,000.00	2
Hampton Roads	44	\$ 232,471.00	\$10,228,000.00	3
Lynchburg	25	\$ 333,231.00	\$ 8,330,000.00	1
NOVA	46	\$ 169,820.00	\$ 7,811,000.00	13
Richmond	84	\$ 244,060.00	\$20,501,000.00	30
Salem	37	\$ 290,167.00	\$10,736,000.00	4
Staunton	21	\$ 314,151.00	\$ 6,597,000.00	2
Central Office	40	\$ 178,615.00	\$ 7,144,000.00	14
Total	372	\$ 252,366.00	\$93,880,000.00	74

2023 SW L&D Design Term Contracts Update

2023 SW L&D Design Contracts Status

- Thirteen (13) contracts.
- 10 million per term, max 4 terms, <u>520 million capacity</u>
- 8% DBE Goal, 9% SWAM Goal

Prime Consultants

Thirteen Awards: RK&K, WRA, JMT, KHA, AECOM, Parsons, Volkert, Rinker, AMT, ATCS, HDR, WSP, Jacobs

Subconsultants

- Average of 13 subconsultants per award
- 67 Subconsultants
- 19 DBE/SWAM, 14 SWAM, 4 DBE firms
- 27 subconsultants on multiple contracts giving us the ability to reach subconsultants on numerous contracts

2023 SW L&D Design Term Contracts Update

Code of VA

- 2.2-4303.1 "The sum of all projects performed in a contract term shall not exceed \$10 million, and the fee for any single project shall not exceed \$2.5 million."
- Max task value of 2.5 million for UPC project

Sixty Seven (67) Subconsultants across Design Term Contracts

Accompong

Accumark

ALA

Alvi

AMD

AXIS Geospatial

Century Eng

CES

Clark Nexsen

Data Collection Group

Dewberry

DMY

Dulles Geotech

ECS

Endesco

EPR, PC

F&R Inc

Floura Teeter & Assoc

GET Solutions

H&B

Haley & Aldrich

Harris Miller Miller Hanson

Hassan Water Resource

HNTB

Hurt Proffitt

Infr. Consulting Eng

InfraMap

J2 Eng.

KDR

Kittleson

Land Planning and Design Assoc

Legacy Eng

Mattern Craig

MBI

McCormick Taylor

McDonough Bolyard Peck

McPherson LLC

Mead & Hunt

Moffatt & Nichol

Nallapaneni

NV5

On Point

Peggy Malone

Pennoni Ass.

Pillar Inc

PMI

PRIME AE

Quality Counts

Ramey Kemp Assoc

Rice

RS&H

Schnabel

Soil and Land Use Tech

Stantec

STV Inc

SZPM Inc

T2 UES Inc

T3

The Traffic Group

Thompson & Litton

Timmons

Toole

toXcel LLC

VHB

Wallace & Montgomery

Wetland Studies & Solutions

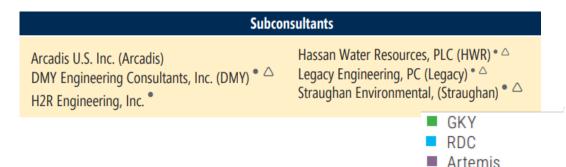
Whitney Bailey Cox & Magnani

2023 Design Term Contracts Summary

District	# of Tasks	Average Value	Total Value	# of Staff Augmenetation
Bristol	2	NA	\$ 699,000.00	2
Culpeper	3	NA	\$ 686,287.00	0
Fredericksburg	2	NA	\$ 1,222,000.00	0
Hampton Roads	0	NA	\$ -	0
Lynchburg	1	NA	\$ 653,715.00	0
NOVA	2	NA	\$ 336,719.00	1
Richmond	8	NA	\$ 3,763,000.00	4
Salem	4	NA	\$ 1,229,000.00	3
Staunton	2	NA	\$ 401,841.00	0
Central Office	3	NA	\$ 423,274.00	2
Total	-27-		\$ -9,417,000.00	12

48

\$13,483,252


(3/6/24)

MS4 Term Contracts Update

2023 SW MS4/Water Resources Implementation and Related Services

- RFP released September 22nd
- 4 million per term, max 4 terms
- Two firms selected: Stantec and JMT
- MOA's being developed for execution
- Scope of Services:
 - Policy, Procedures, and Manual Updates
 - MS4 Data Management and GIS (Databases w/ Geospatial)
 - Design, Engineering & CADD Support, Studies for MS4 / Stormwat → Wallace Montgomery
 - District Support: NPDES Inspections; BMP Corrective Action Plans, etc.
 - Training: Development and Delivery
 - Resiliency and Flooding
 - Total Maximum Daily Loads (TMDL)

□ Clean Streams

CFS

H&B
■ DMY

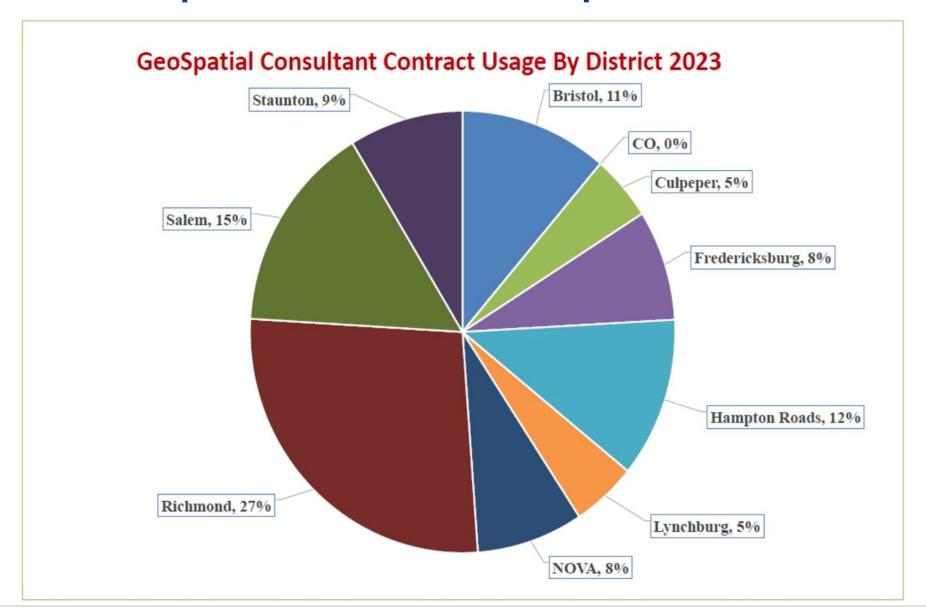
SMC

Hydraulics and Geospatial Term Contracts Update

2023 SW Util Reloc Design and Related Services

- One award executed Feb 2023
- Michael Baker, 1 million per term, max 4 terms
- Currently in Term 1, with 35 assignments, Valued at \$700,000
 - Subs: Mattern & Craig, Mcormick Taylor, RJM, WRA

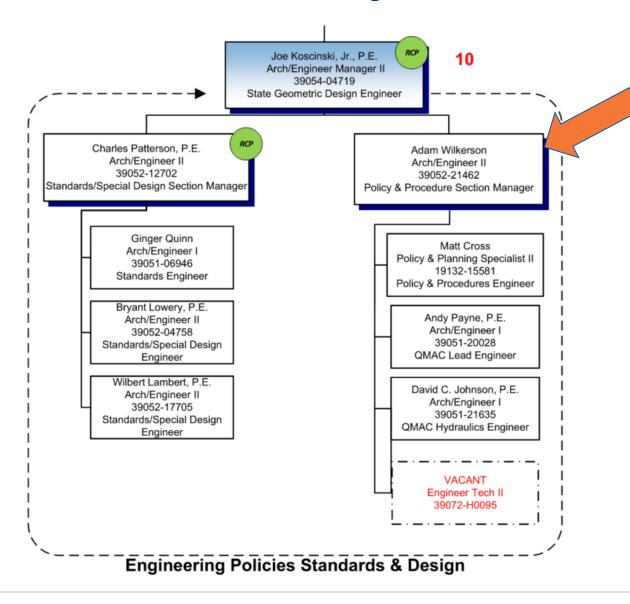
2023 SW Geospatial Contracts


- ATCS, Rice, and Woolpert
- 4 million per term, max 4 terms
- Currently in Term 1, with 137 assignments valued at \$7,700,000

2023 SW Subsurface Utility Exploration (SUE)

- JMT and Accumark
- 4 million per term, max 4 terms
- Currently in final term, with 351 assignments valued at \$18,816,000

SW L&D GeoSpatial Term Contracts Update



POLICY & STANDARDS UPDATE

Standards and Policy Sections

Formerly George Rogerson's position

Policy Updates

- 508 Compliance
- Interstate Access Reports
 - IIM 200
- RDM Updates
- PROWAG
- IIM Updates
 - IIM 235
 - IIM 227
- QMAC ie Tier 2 milestone reviews
- LACC/Location Approvals

Interchange Access Reports

PROJECT INVOLVEMENT MATRICES

Effective 10/16/2023 for IAR and OSAR development (will be rescinded upon release of IIM-LD-200.12)

Table 1 Non-Interstate Project Involvement

Non-Interstate Projects ¹		
Document	VDOT Final Signatory Level ²	
Framework	Assistant State L&D Engineer	
Operational and Safety Analysis Report (OSAR)	State L&D Engineer	
Interchange Access Report (IAR)	Deputy Chief Engineer ³	

Table 2 Interstate Project Involvement

Interstate Projects ^{1,6}				
Document	VDOT Final Signatory Level	FHWA Involvement		
Framework⁴	Assistant State L&D Engineer	Concurrence⁴		
Operational and Safety Analysis Report (OSAR)	State L&D Engineer	Concurrence ⁵		
Interchange Access Report (IAR)	Deputy Chief Engineer ³	Approval		

Notes:

- 1. For PODI's, See individual project S&O Plan
- 2. Signatures indicate approval
- 3. State L&D Engineer concurs prior to Deputy Chief Engineer approval
- 4. Communication with FHWA is required during the development of the Framework Document to determine the selection of report for the requested change in access
- 5. OSAR deemed "significant change" requires FHWA Approval
- 6. In Accordance with VDOT / FHWA Stewardship and Oversight Agreement

*Please note that approval from FHWA must be requested. It is not guaranteed.

Policy Updates

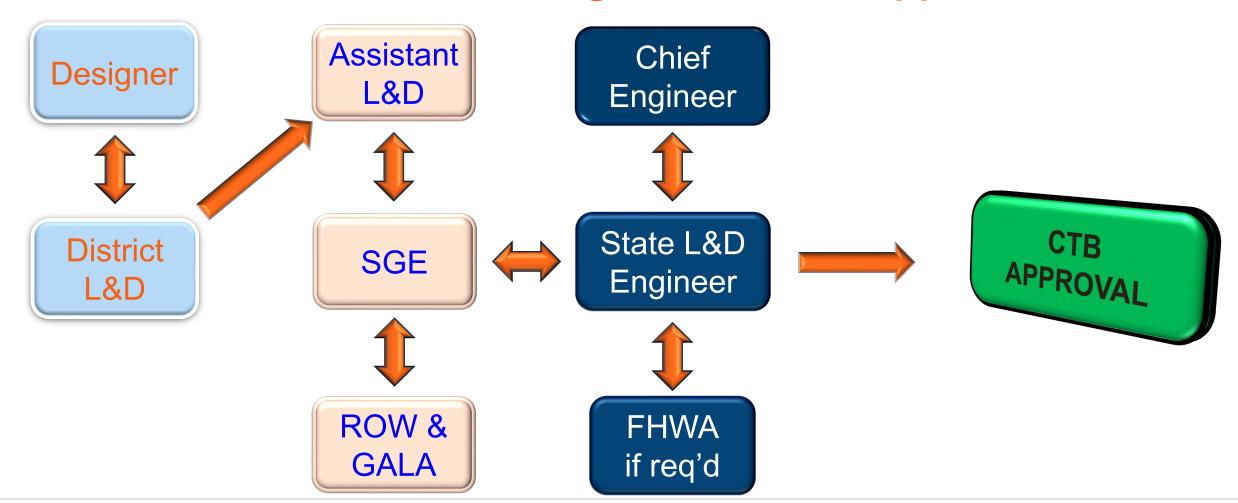
RDM - over 50 proposed changes in progress

- U-Turn Sight Distance
- Roundabouts (est. April)
- Appendix J
- 3R/PM
- Angle breaks
- Superelevation Diagrams new format for ORD
- Expand Quality Control Chapter 1E
- Chief sign vs CTB approvals for LACC
- Cycle Tracks
- LD-436
 - Updates for Hyd, Electronic File Management, Hyd

IIM UPDATES

IIM-235

Better aligns with IIM 255 Performance Based Practical Design (PBPD)


IIM-227 Major Changes (not approved yet)

- Removal of Structure and Bridge Division
 - S&B has own policy now in Part 2 of S&B Manual
 - Working with TOD
 - Agreement for Safety and Operational Projects Not Requiring Formal DEs and DWs (in progress)
- Design Waivers on Title Sheets
- Hydraulics Waivers
- Approval Authority on Land Use Waivers
- Waivers for Accel and Decel lanes proposed

Limited Access Change process

Limited Access Control Changes / Location Approvals

STANDARDS AND SPECIAL DESIGN UPDATES

Updates from Standards and Special Design

New additions

- Ginger Quinn
- Wilbert Lambert

Virtual GRIT Update

- Two classes per month based on demand (all virtual)
- 70 seats available per class
- 3 year certification upon successful completion of exam
- Required for installers and consultant inspectors
- Recommend for designers

MwRSF Pooled Fund Update

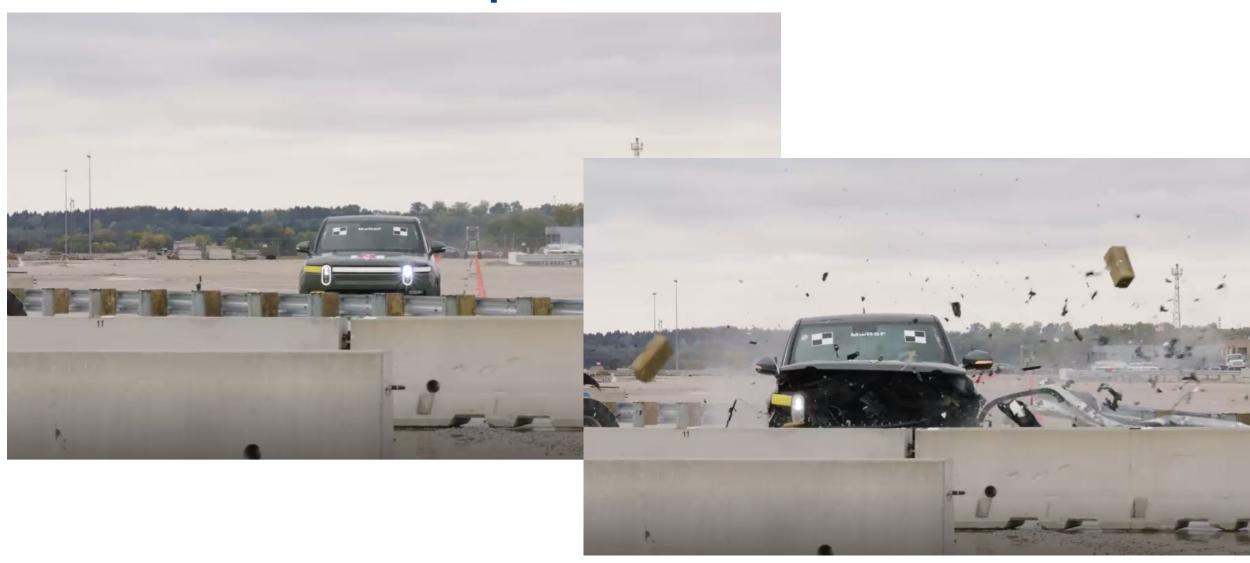
Electric Vehicle Crash Tests

Tesla Model 3
MASH 3-10, 62 mph, 25 degrees, 8" block outs
Under-rode the w-beam and penetrated behind the rail

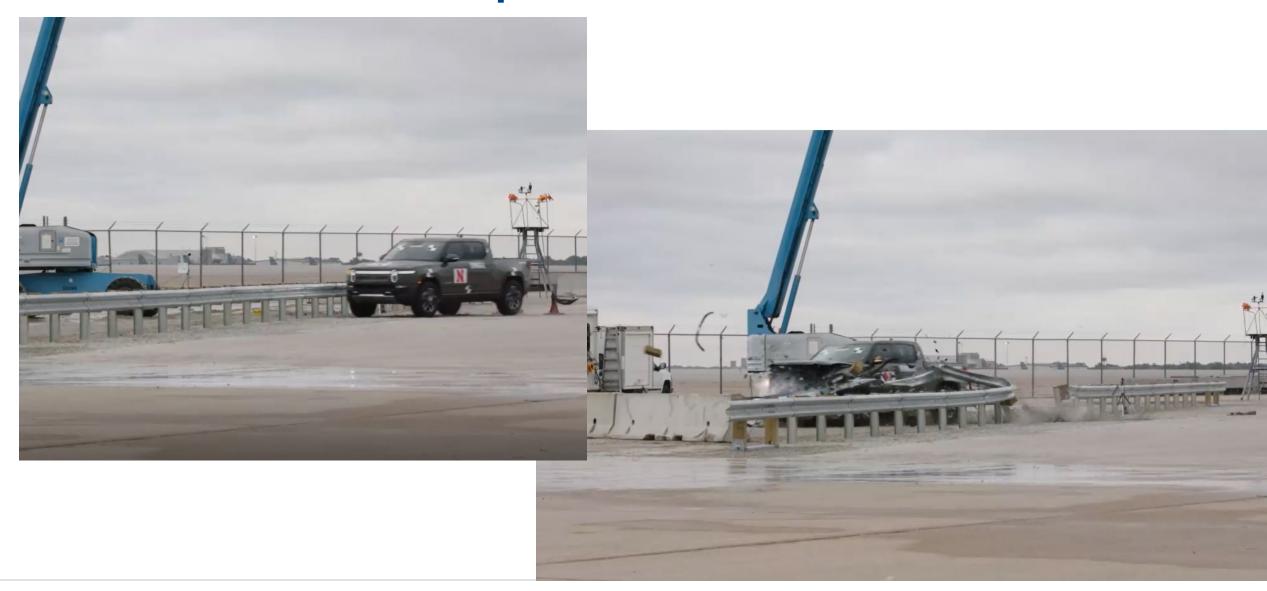
Rivian R1T (3:46:30)

MASH 3-11, 62 mph, 25 degrees, 8" block outs

Penetrated through the system


231012 EV Crash

Next Steps:

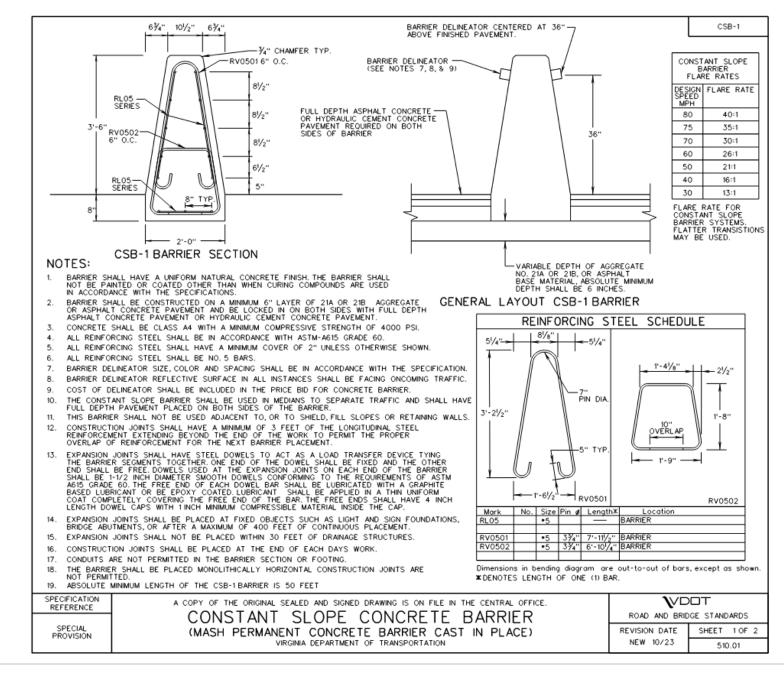

Additional testing of other common electric vehicles Modifications to MGS or new system, TBD

MwRSF Pooled Fund Update

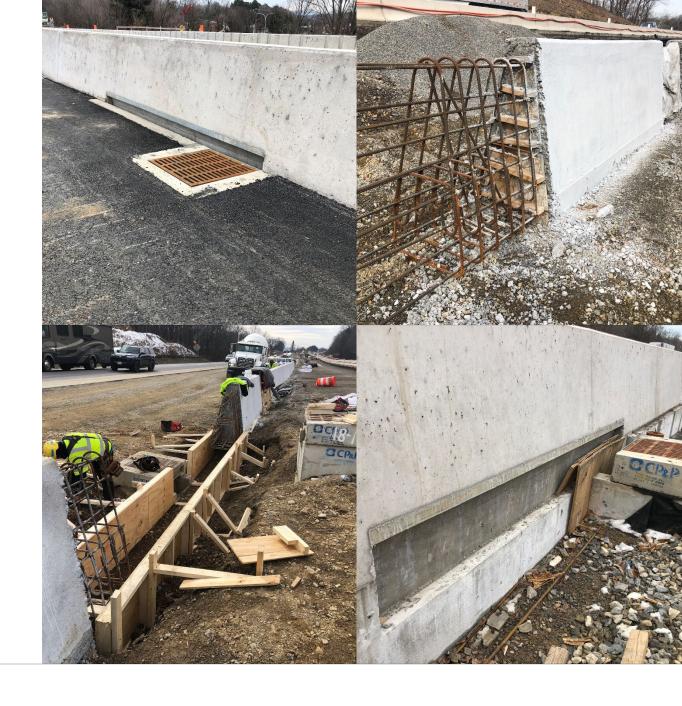
MwRSF Pooled Fund Update

Standards Update

Update to the MB-3 (in progress)


- MASH TL-3 compliant
- Uses 31" MGS components
- Proprietary terminal under review (Valtir MATT)
- MATT can replace damaged CAT 350 with transition

Constant Slope Barrier (CSB)


- MASH TL-4 compliant
- 42" tall constant slope shape
- Median and shoulder applications
- Grade differential applications
- Drainage structures will be single chamber with connector pipe (if required)
- Transitions for MGS and Pier Protection system
- Still not published for Design Bid Build Use

CSB-1

Pictures of CSB

Project Management Office

Rob Tieman, PE, PMP Project Management Office Director <u>robert.tieman@vdot.virginia.gov</u>

TPMI (2024)

- May 6-9, 13-16
- Boar's Head Inn in Charlottesville, Virginia
- Consultants should submit your applications on the UVA TPMI website

David Beardsley, PE, PTOE, PMP

Challenges with current policy:

- 1. Design performance check package submittals are wildly inconsistent
- 2. Doesn't address current state-of-the-practice for <u>multi-lane designs</u> that help avoid sideswipe crash issues seen nationally (buffered designs)
- 3. Lack of consistency with submittal of performance checks in the PDP. Don't want these issues to arise at PAC or Adv.
- 4. New NCHRP 1043 replaces NCHRP 672 and there is a need to reflect the change

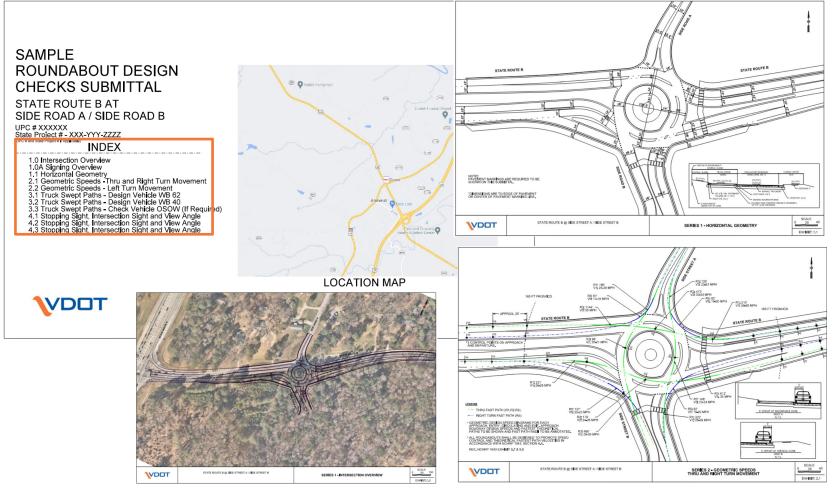
DRAFT POLICY UPDATE GOALS:

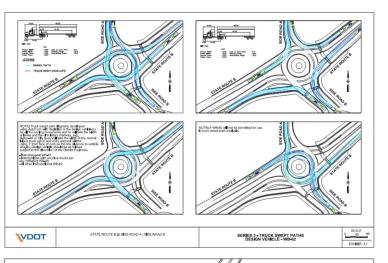
Bring more consistency to roundabout design across the State

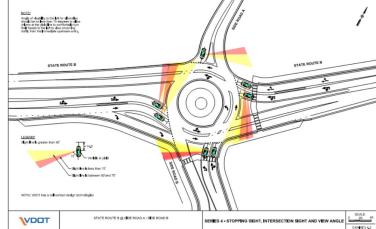
Reflect change from NCHRP 672 to NCHRP 1043 issued in Summer 2023

Add content to help VDOT maximize safety at hybrid and multilane roundabouts

NATIONAL COOPERATIVE HIGHWAY RESEARCH PROGRAM Require a more formal NCHRP RESEARCH REPORT 1043 **Guide for Roundabouts** prescribed performance KITTELSON & ASSOCIATES, INC. Portland, OR check package SUNRISE TRANSPORTATION STRATEGIES, LLC TEXAS A&M TRANSPORTATION INSTITUTE KIMLEY-HORN AND ASSOCIATES, INC. Peachtree Corners, GA ACCESSIBLE DESIGN FOR THE BLIND, LLC Clarify design vehicle requirements Highways • Design Research sponsored by the American Association of State Highway and Transportation Officials in cooperation with the Federal Highway Administration TREE TRANSPORTATION RESEARCH BOARD NATIONAL Sciences Engineering ACADEMIES Medicine


DRAFT POLICY UPDATE FOR 2024:


- Performance Check Package:
 - Require criteria table to be approved before submitting plans
 - Prescriptive package and VDOT will provide an example package to model submittals after


,	VDOT ROUNDABOUT DESIGN CRITERIA	TABLE	
	VDOT Standard		
Geometric Design Element	Single-Lane	<u>Multilane</u>	
Inscribed Circle Diameter ⁽¹⁾	110 – 160 ft	145 – 180 ft	
Circular ROW Footprint ⁽²⁾	136 – 186 ft	175 – 210 ft	
Design Vehicle (on pavement only)	Fire truck/BUS-45	Fire Truck/BUS-45	
Design Vehicle ⁽³⁾	WB-40/WB-62/or WB-67	WB-40/WB-62/or WB-67	
Fastest Path Entry Speed, R1 (method: NCHRP 1043, 9.4) (4)	20 - 25 mph	25 - 30 mph	
Fastest Path Entry/Circulating Speed Differential (R1 to R4)	10 mph max.	10-15 mph max.	
Circulatory Cross Slope req'd	-2%	-2%	
Maximum Longitudinal Grade (approach or circulating)	5.0%	5.0%	
Splitter Island Length (< 35mph) (> 35mph)	50ft. minimum 100ft. minimum	100ft. minimum 200ft. minimum	
Entry Radius (near the yield line)	60 – 90 ft	70 – 100 ft	
Exit Radius	120 ft min.	200 ft min.	
View Angle	75 – 90 degrees minimum	75 – 90 degrees minimum	
Entry Width, F-F ⁽⁶⁾ Buffered Lane Design	16 – 21 ft N/A	28 – 32 ft 2ft. to 4ft.	
Circulatory Roadway Width, F-	17 – 20 ft	28 – 32 ft	
Inner Circulatory Lane Width	n/a	11 - 13ft	
Outer Circulatory Lane Width	n/a	12 – 15 ft	
Exit Width	16 – 18 ft	28 – 32 ft	
Truck Apron Width	12 – 18 ft	10 – 14 ft	
Minimum Tangent between Approach Curves	50ft. minimum	50 ft. minimum	
Entry tangency (for path overlap check) NCHRP 1043, Exh. A. 18.	n/a	26 – 50ft	
Exit tangency (for path overlap check) NCHRP 1043, Exh. A. 18.	n/a	26ft +	
Crosswalk Pedestrian Refuge Width, ft	6ft minimum, face-of-curb to face-of-curb	6ft minimum, face-of-curb to face-of-curb	
Crossing Accommodation RRFB not required for single lane		RRFB or other required for Multilane crossing (see PROWAG)	
Maintenance of Traffic	Specify Partial/Full Detour or under traffic	Specify Partial/Full Detour or under traffic	

Standardize the Performance Check Package:

THANK YOU

STRUCTURE & BRIDGE UPDATE

ASHE Potomac Section

Micah S. Ceary, PhD, PE, DBIA Design Engineering Program Manager

March 13, 2024

Steps in Creating Template

- 1. Future Contracts (Design Build)
- 2. Future Contracts (Project Specific)
- 3. Future Contracts (Term)
- 4. Future Contracts (Bridge Inspection)
- 5. Hot Items
- 6. Technical Guidance Changes
- 7. Bridge Project Development Guidance Changes

Future Contracts (Design Build)

 Fall Line Trail Southern Section (Southern Terminus to Route 10); Spring 2024

HREL Segment 1B; Hampton Roads District; May 2024

Route 58 Vesta; Summer 2024

 SGR/BIL Bridge Bundle No. 4 (5 Bridges); Richmond and Lynchburg Districts; Summer 2024

Future Contracts (Design Build)

- US 29/Fontaine Interchange Improvements; September 2024
- I-64/Denbigh Blvd Interchange Phase I; September 2024
- McMullen Bridge Route 660 Replacement; Fall 2024
- I-64/I-264 Interchange Phase 3A; December 2024

Potential DB Contracts

- I-81 NB Widening MM 128 to MM 137; 2025
- I-81 NB & SB Widening MM 313 to MM 317; 2026
- I-81 NB Widening MM 116 to MM 128; 2028

Future Contracts (Project Specific / Term)

Project Specific

Piedmont Avenue; Bristol District; Fall 2024

Term

- SW Bridge Design Term Contracts; Winter 2024-2025
 - Executed MOAs by Summer/Fall 2025

Future Contracts (Bridge Inspection)

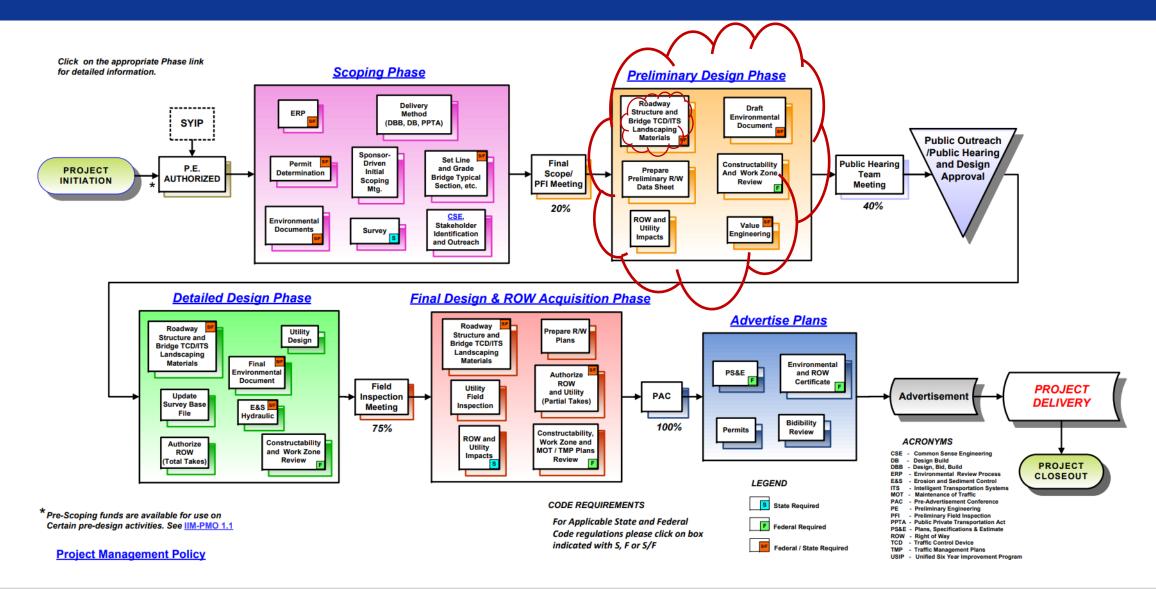
Bridge Inspection

Order of Procurement	District	Tentative Advertisement Period
1	Richmond	2024 2nd Quarter
2	Northern Virginia	2024 2nd Quarter
3	Fredericksburg	2024 3rd Quarter
4	Bristol	2025 1st Quarter
5	Salem	2025 1st Quarter
6	Statewide	2025 1st Quarter

Hot Items

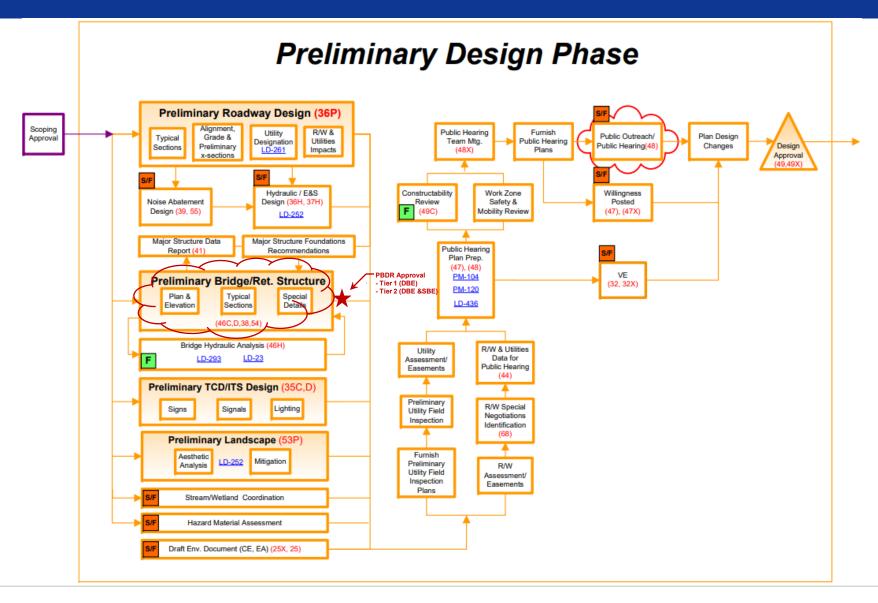
Issues on Current Contracts

- DBE and SWaM Meeting goal requirements
 - Monitored, Form C-49 PSC (Good Faith Effort)
 - Mitigation Plans require as soon as issue identified
 - More focus on future RFPs on DBE/SWaM Usage Plan
- LOAs slow development by consultants
- QA/QC needs to be completed by consultant / DB teams
 - Spelling and Math errors


Project Development Guidance Changes

Pending Revision of IIM-S&B-19.10

- Comprehensively updated and modernized
 - Fully integrated with VDOT Project Development Process
 - S&B phase reviews & early involvement by CO S&B (T2)
- Utilizes a risk-based approach
 - Still uses Tier I/II designation
 - More focus on complex bridges & refined analysis
 - NSTM (staddle bent, integral pier cap, cross girders, etc.)
- Exceptions for Tier II to Tier I projects or CO S&B Reviews
- DEs and DWs need to be submitted as early as possible



Preliminary Bridge Design Report: General Approach

Preliminary Bridge Design Report: General Approach

Preliminary Bridge Design Report: General Approach

- New Bridge
- Bridge Replacement
- Bridge Widening
- Large Culvert
- Large Culvert Extension
- Major Rehabilitation: Superstructure Replacement
- Major Rehabilitation: Deck Replacement
- Major Modification to an Existing Structure
- Other Structures (as appropriate)

Preliminary Bridge Design Report: Add'l Requirements

More information is required for below

- Preliminary Refined Modeling and Analysis
 - Scoping: Additional information
 - PRBD: Preliminary refined analysis report (especially DB)
- Bridges at Interchanges
 - Memorandum for Optimization of the Conceptual Bridge & Roadway Geometry at Interchanges Memorandum
 - DWs, DEs, Atypical & Unique Details
 - Additional details in the preliminary plans

Bridge Widths (Part 2, Chapter 6 – Geometrics)

- Aligns with AASHTO Green Book...Requirements based on three project types:
 - 1. New construction no existing roadway/bridge is present
 - 2. Reconstruction typically originate as road projects (they do not originate due to a bridge condition need). Examples include widening for additional lanes; or adding a median where none currently exists.
 - 3. Construction on existing roads ("bridge only" projects) projects that maintain the basic roadway type and address a primary need related to the bridge. (may include shifts in horizontal / vertical alignment for MOT or hydraulic needs)

Bridge Widths (Part 2, Chapter 6 – Geometrics)

- Aligns with AASHTO Green Book...Requirements based on three project types:
 - 3. Construction on existing roads ("bridge only" projects) projects that maintain the basic roadway type and address a primary need related to the bridge. (may include shifts in horizontal / vertical alignment for MOT or hydraulic needs)

Bridge Widths (Part 2, Chapter 6 – Geometrics)

1. New Construction widths

- Did not change from previous version of chapter 6
- Widths are in alignment with the GS standards of the VDOT Road Design Manual
- This was the previously the only category

2. Reconstruction widths

 Bridge width must match the roadway total width, including shoulders (and bike/ped accommodations)

Bridge Widths (Part 2, Chapter 6 – Geometrics)

3. Bridge Only widths

- Try to match characteristics of the approach roadway in terms of width and other features
- May often result in widths less than new construction
- This is possible in the context of the known performance of the existing facility (approach roadway and bridge)
- Wider widths should be considered when there are geometric and safety issues at bridge (intersections, entrances, curvature, etc.)
- Consider bicycle-pedestrian facilities (if present on the bridge, immediate approaches, or project in SYIP) and meet ADA req's.

Bridge Widths (Part 2, Chapter 6 – Geometrics)

For Design/Build projects - specific requirements will be provided in the Technical Requirements (TRs)

Bridge Deck Drainage – rainfall intensity, allowable spread

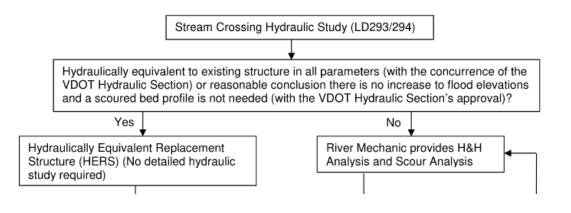
Previous

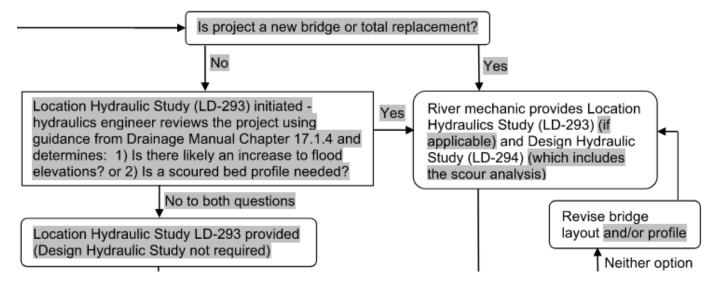
Table in Ch 22 of S&B Manual

DESIGN STORM FREQUENCY, INTENSITY AND SPREAD					
Roadway Classification	Design Speed	Design Storm		Maximum Design	
		Frequency	Intensity	Spread Width	
	(mph)	(year)	(in/hr)	(ft)	
Freeways (Interstate):					
On Grade	ALL	10	*Actual	Shoulder width w/ no encroachment in traffic lane	
At Sag Point	ALL	50	*Actual	Shoulder width w/ no encroachment in traffic lane	
Principal Arterial:					
On Grade	≤ 50	10	4.0	Shoulder/gutter width plus 1/2 traffic lane encroachment	
On Grade	> 50	10	*Actual	Shoulder/gutter width plus 3'-0" encroachment in traffic lane	
At Sag Point	≤ 50	10	4.0	Shoulder/gutter width plus 1/2 traffic lane encroachment	
	> 50	50	*Actual	Shoulder/gutter width plus 3'-0" encroachment in traffic lane	
Minor Arterial, Collector and Local:					
On Grade	≤ 50	10	4.0	Shoulder/gutter width plus 1/2 traffic lane encroachment	
	> 50	10	4.0	Shoulder/gutter width plus 3'-0" encroachment in traffic lane	
At Sag Point	≤ 50	10	4.0	Shoulder/gutter width plus 1/2 traffic lane encroachment	
	> 50	50	4.0	Shoulder/gutter width plus 3'-0" encroachment in traffic lane	

Now Ch 22 refers to Table 9-1 of Drainage Manual

Table 9-1 Criteria for Inlet Design


Roadway Classification			Design Storm		Maximum
		Design Speed (mph)	Frequency (year ^{1, 2})	Intensity (in./hr.)	Design Spread Width ³ (ft)
In	nterstate				
With	On Grade	All	10	Actual	Sh. Width ⁶ *
	Sag Location⁵	All	50	Actual	Sh. Width ⁶
P	rincipal Arterial				
<u></u>	On Grade	≤ 50	10	Actual	Sh. Width + 3
th de	On Grado	> 50	10	Actual	Sh. Width
With Shoulder	Sag Location ⁵	All	10	Actual	Sh. Width + 3
Without Shoulder	On Grade⁵	≤ 50	N/A ⁴	4	½ Driving Lane + Gutter Width (If Any)
		> 50	10	Actual	½ Driving Lane + Gutter Width (If Any)
	Sag Location ⁵	≤ 50	N/A⁴	4	½ Driving Lane + Gutter Width (If Any)
		> 50	50	Actual	½ Driving Lane + Gutter Width (If Any)
Minor A	Arterial, Collector, Local				_
Į.	On Grade	≤ 50	N/A ⁴	4	Sh. Width + 3
ith ulde		> 50	N/A ⁴	4	Sh. Width
With Shoulder	Sag Location	All	N/A ⁴	4	Sh. Width + 3
Without Shoulder	On Grade	All	N/A ⁴	4	½ Driving Lane + Gutter Width (If Any)
	Sag Location	All	N/A ⁴	4	½ Driving Lane + Gutter Width (If Any)



Algorithm for Hydraulic Study – within Chapter 8

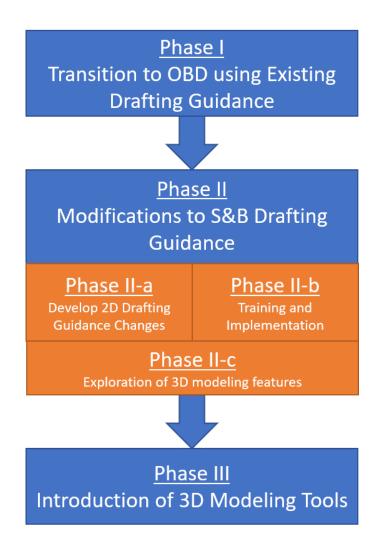
Previous

Now (as of October 31)

Bridge Project Development Guidance Changes

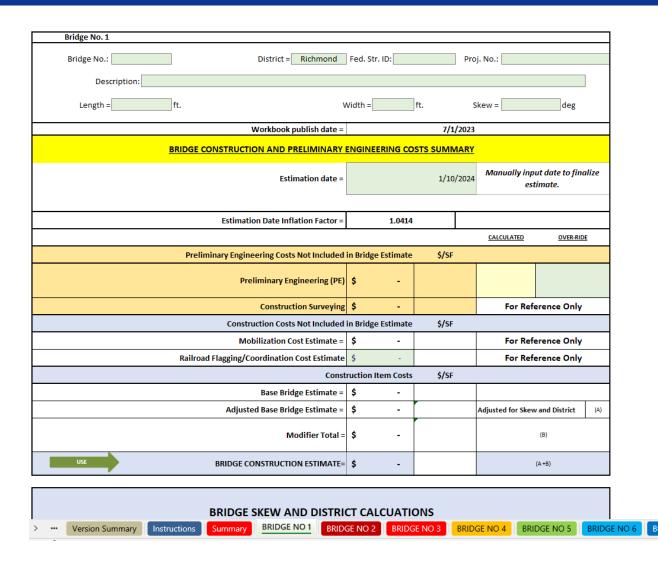
- S&B CADD Modernization
- PCET Bridge Estimation Tool

Bridge Project Development Guidance Changes


S&B CADD Modernization

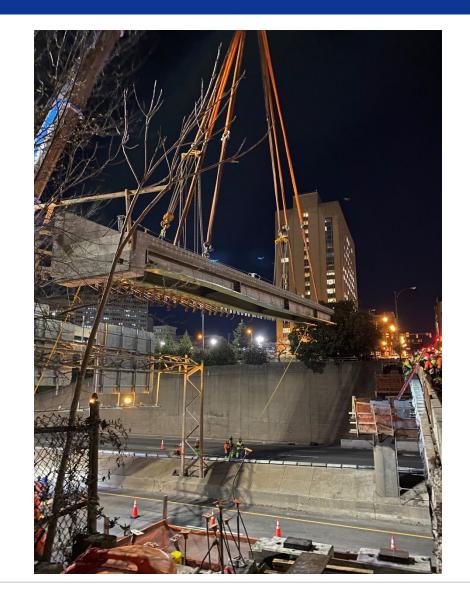
Phase I: Interim Transition to OBM (Current)

Installations / Training


Phase II: Implementation of OBM (2024)

- MDL applications / Level System
- Complete Revision to Manual of S&B, Part 2 Chapter 1: General Drafting Procedures
- Standard Drawings
- Guide document, Job aids and training
- Limited 3D Bridge Modeling

Bridge Project Development Guidance Changes


PCET Tool

Inflationary Period Start Date	Inflation Rate	Override Inflation Rate
7/1/2023	8.00%	
7/1/2024	5.00%	
7/1/2025	5.00%	
7/1/2026	5.00%	
7/1/2027	5.00%	
7/1/2028	5.00%	

Questions

QUESTIONS

